SSM models publications since 2011

2022

  • Dueri, S., Brown,, Asseng, S., Ewert, F., and  et al. 2022. Simulation of winter wheat response to variable sowing dates and densities in a high-yielding environment. Journal of Experimental Botany 73: 5715–5729. https://doi.org/10.1093/jxb/erac221

 

  • Alasti, O., Zeinali, E., Soltani, A. and Torabi, B., 2022. Exploring the current status of barley yield and production gap of Iran. European Journal of Agronomy.139:126547. https://doi.org/10.1016/j.eja.2022.126547

 

  • Dadrasi, A., Torabi, B., Rahimi, A., Soltani, A. and Zeinali, E., 2022. Modeling Potential production and yield gap of potato using modelling and GIS approaches. Ecological Modelling, 471: 110050. https://doi.org/10.1016/j.ecolmodel.2022.110050

 

  • Fink, K.P., Grassini, P., Rocateli, A., Bastos, L.M., Kastens, J., Ryan, L.P., Lin, X., Patrignani, A., Lollato, R.P., 2022. Alfalfa water productivity and yield gaps in the U.S. central Great Plains. Field Crops Research. 289: 108728. https://doi.org/10.1016/j.fcr.2022.108728

 

  • Kothari, K., Battisti, R., Boote, K. J., Archontoulis, S. V., and et al. 2022. Are soybean models ready for climate change food impact assessments?. European Journal of Agronomy. 135: 126482. https://doi.org/10.1016/j.eja.2022.126482

 

  • Manschadi, A. M., Palka, M., Fuchs, W., Neubauer, T., Eitzinger, J., Oberforster, M., Soltani, A., 2022. Performance of the SSM-iCrop model for predicting growth and nitrogen dynamics in winter wheat. European Journal of Agronomy. 135: 126487. https://doi.org/10.1016/j.eja.2022.126487

2021

  • Wallach, D., Palosuo, T., Thorburn, P., Hochman, Z., and et al. 2021. The chaos in calibrating crop models: Lessons learned from a multi-model calibration exercise. Environmental Modelling and Software.145. https://doi.org/10.1016/j.envsoft.2021.105206

 

  • Bregaglio, S., Willocquet, L., Kersebaum, K.C., Ferrise, R., et al. 2021. Comparing process-based wheat growth models in their simulation of yield losses caused by plant diseases. Field Crops Research. 265. https://doi.org/10.1016/j.fcr.2021.108108

 

  • Wallach, D., Palosuo, T., Thorburn, P., Hochman, Z., and et al. 2021. Multi-model evaluation of phenology prediction for wheat in Australia. Agricultural and Forest Meteorology. 108289: 298-299. https://doi.org/10.1016/j.agrformet.2020.108289

 

  • Wallach, D., Palosuo, T., Thorburn, P., Gourdain, E., and et al. 2021. How well do crop modelling groups predict wheat phenology, given calibration data from the target population? European Journal of Agronomy. 124.  https://doi.org/10.1016/j.eja.2020.126195

 

  • Amiri, S., Eyni-Nargeseh, H., Rahimi-Moghaddam, S. and Azizi, K., 2021. Water use efficiency of chickpea agro-ecosystems will be boosted by positive effects of CO2 and using suitable genotype× environment× management under climate change conditions. Agricultural Water Management, 252:106928. https://doi.org/10.1016/j.agwat.2021.106928

 

  • Hajjarpoor, A., Kholová, J., Pasupuleti, J., Soltani, A., Burridge, J., Degala, S.B., Gattu, S., Murali, T.V., Garin, V., Radhakrishnan, T., Vadez.V. 2021. Environmental characterization and yield gap analysis to tackle genotype-by-environment-by-management interactions and map region-specific agronomic and breeding targets in groundnut. Field Crops Research. 267:108160. https://doi.org/10.1016/j.fcr.2021.108160

 

  • Hosseini, R.A., Soltani, A., Ajamnorozi, H. and Zahed, M., 2021. The impact of climate change on rain-fed wheat yield in Iran. Arabian Journal of Geosciences, 14(19): 1-11. https://doi.org/10.1007/s12517-021-08213-w

 

  • Jaenisch, B.R., Munaro, L.B., Bastos, L.M., Moraes, M., Lin, X. and Lollato, R.P., 2021. On-farm data-rich analysis explains yield and quantifies yield gaps of winter wheat in the US central Great Plains. Field Crops Res, 272: 108287. https://doi.org/10.1016/j.fcr.2021.108287

 

  • Manschadi, A. M, Eitzinger, J., Breisch, M., Fuchs, W., Neubauer, Neubauer, T., Soltani, A., 2021. Full Parameterisation Matters for the Best Performance of Crop Models: Inter-comparison of a Simple and a Detailed Maize Model. International Journal of  Plant Production. 15:61–78. https://doi.org/10.1007/s42106-020-00116-2

 

  • Nehbandani, A., Soltani, A., Rahemi-Karizaki, A., Dadrasi, A., Nour, A., 2021. Determination of soybean yield gap and potential production in Iran using modeling approach and GIS. Journal of Integrative Agriculture. 20(2):395–40. http://dx.doi.org/10.1016/S20953119(20)63180-X

 

  • Soltani, E., Soltani, A., Alimagham, M., Zand, E., 2021. Ecological footprints of environmental resources for agricultural production in Iran: a model-based study. Environmental science and pollution research. 28(48): 68972-68981. https://doi.org/10.1007/s11356-021-15119-3

2020

  • Amiri, S.R., Deihimfard, R. and Eyni-Nargeseh, H., 2020. Toward dormant seeding of rainfed chickpea as an adaptation strategy to sustain productivity in response to changing climate. Field Crops Research. 247: 107674. https://doi.org/10.1016/j.fcr.2019.107674

 

  • Dadrasi, A., Torabi, B., Rahimi, A., Soltani. A., Zeinali, E. 2020. Parameterization and Evaluation of a Simple Simulation Model (SSM-iCrop2) for Potato (Solanum tuberosum L.) Growth and Yield in Iran. Potato Research. 63: 545–563.   https://doi.org/10.1007/s11540-020-09456-y

 

  • Nehbandani, A., Soltani, A., Nourbakhsh, F. and Dadrasi, A., 2020. Estimating crop model parameters for simulating soybean production in Iran conditions. Oilseed and fats crops and lipids. 58(8). https://doi.org/10.1051/ocl/2020057

 

  • Schoppach, R., Sinclair, T.R., Sadok, W., 2020. Sleep tight and wake-up early: nocturnal transpiration traits to increase wheat drought tolerance in a Mediterranean environment. Functional Plant Biology. 47(12):1117-1127. https://doi.org/10.1071/fp20044.

 

  • Sinclair, T, R., Soltani, A., Marrou, H., Ghanem, M., Vadez, V. 2020. Geospatial assessment for crop physiological and management improvements with examples using the simple simulation model. Crop Science. 60(2): 700-708. https://doi.org/10.1002/csc2.20106

 

  • Soltani, A., Alimagham, S. M., Nehbandani, A., Torabi, B., Zeinali, E., Dadrasi, A., Zand, E., Ghassemi, S., Pourshirazi, S., Alasti, O., Hoseini, R. S., Zahed, M., Arabameri, R., Mohammadzadeh, Z., Rahban, S., Kamari, H., Fayazi, H., Mohammadi, S., Keramat, S., Vadez, V., Sinclair, T. R. 2020. SSM-iCrop2: A simple model for diverse crop species over large areas. Agricultural Systems. 182: 102855. https://doi.org/10.1016/j.agsy.2020.102855

 

  • Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Zand, E., Ghassemi, S., Vadez, V., Sinclair, T.R. and van Ittersum, M.K., 2020. Modeling plant production at country level as affected by availability and productivity of land and water. Agricultural Systems. 183: 102859. https://doi.org/10.1016/j.agsy.2020.102859

 

  • Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Zand, E., Vadez, V., van Loon, M.P. & van Ittersum, M.K., 2020. Future food self-sufficiency in Iran: A model-based analysis. Global Food Security. 24: 100351. https://doi.org/10.1016/j.gfs.2020.100351

2019

 

 

  • Lollato, R.P., Ruiz Diaz, D.A., DeWolf, E., Knapp, M., Peterson, D.E. and Fritz, A.K., 2019. Agronomic practices for reducing wheat yield gaps: a quantitative appraisal of progressive producers. Crop Science. 59(1): 333-350. https://doi.org/10.2135/cropsci2018.04.0249

 

  • Sciarresi, C., Patrignani, A., Soltani, A., Sinclair, T.R., Lollato, R.P. 2019. Plant traits to increase winter wheat yield in semiarid and subhumid environments. Agronomy Journal. 111: 1-13. https://doi.org/10.2134/agronj2018.12.0766

 

  • Sadok, W., Schoppach, R., Ghanem, M.E., Zucca, C. and Sinclair, T.R.,. 2019. Wheat drought-tolerance to enhance food security in Tunisia, birthplace of the Arab Spring. European Journal of Agronomy. 107:1-9. https://doi.org/10.1016/j.eja.2019.03.009

2018

  • Webber, H., Ewert, F., Olsen, J.E., Muller, Ch., Frozenk, S., and et al. 2018. Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications. 9(1): 4249. https://doi.org/10.1038/s41467-018-06525-2

 

  • Webber, H., White, W., Kimball, B.A., Ewert, F., and et al. 2018. Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions. Field Crops Research. 216: 75-88. https://doi.org/10.1016/j.fcr.2017.11.005

 

  • Amiri, S. R., Deihimfard, R., 2018. Can the dormant seeding of rainfed lentil improve productivity and water use efficiency in arid and semi-arid conditions?. Field Crops Research. 227: 67-78. https://doi.org/10.1016/j.fcr.2018.07.014

 

  • Amiri, S.R., Deihimfard, R., Soltani, A., 2016. A single supplementary irrigation can boost chickpea grain yield and water use efficiency in arid and semiarid conditions: A modeling study. Agron. J. 108: 2406–2416.  https://doi.org/10.2134/agronj2016.02.0087

 

  • Hajjarpoor, A., Vadez, V., Soltani, A., Gaur, P., Whitbread, A., Babu, D.S., Gumma, M.K., Diancoumba, M., Kholova, J., 2018.  Characterization of the main chickpea cropping systems in India using s yield gap analysis approach. Field Crops Research. 223: 93-104. https://doi.org/10.1016/j.fcr.2018.03.023

 

 

  • Shaaban, A.S.A.; Wahbi, A.; Sinclair, T.R. 2018. Sowing date and mulch to improve water use and yield of wheat and barley in the Middle East environment. Agricultural Systems. 165, 26–32. https://doi.org/10.1016/j.agsy.2018.05.011

 

2017

  • Ghanem, M. E., Kibbou, F., Guiguitant, J., Sinclair, T., 2017. Opportunities to improve the seasonal dynamics of water use in lentil (Lens culinaris Medik.) to enhance yield increase in water-limited environments. Chemical and Biological Technologies in Agriculture. 4: 22. https://doi.org/10.1186/s40538-017-0103-y

 

  • Guiguitant, J., Marrou, H., Vadez, V., Gupta, P., Kumar, S., Soltani, A., Sinclair, T., Ghanem, M., 2017. Relevance of limited-transpiration trait for lentil (Lens culinaris Medik.) in South Asia. Field Crops Research. 209, 96–107. https://doi.org/10.1016/j.fcr.2017.04.013

 

  • Lollato, R.P., Edwards, J.T., Ochsner, T.E., 2017. Meteorological limits to winter wheat productivity in the US southern Great Plains. Field Crops Research. 203: 212-226. https://doi.org/10.1016/j.fcr.2016.12.014

 

  • Roberts, M.J., Braun, N.O., Sinclair, T.R., Lobell, D.B., Schlenker, W., 2017. Comparing and combining process-based crop models and statistical models with some implications for climate change. Environmental Research Letters. 12(9):095010. https://doi.org/10.1088/1748-9326/aa7f33

 

  • Schoppach, R., Soltani, A., Sinclair, T., Sadok, W., 2017. Yield comparison of simulated rainfed wheat and barley across Middle-East. Agricultural Systems. 153: 101-108. https://doi.org/10.1016/j.agsy.2016.12.017

 

  • Vadez, V., Halilou, O., Hissene, HM., Sibiry-Traore, P., Sinclair, TR., and Soltani, A.2017. Mapping Water Stress Incidence and Intensity, Optimal Plant Populations, and Cultivar Duration for African Groundnut Productivity Enhancement. Frontiers in Plant Science. 8:432. https://doi.org/10.3389/fpls.2017.00432

2016

  • Halilou, O., Hissene, H.M., Clavijo Michelangeli, J.M., Hamidou, F., Sinclair, T.R., Soltani, A., Mahamane, S., Vadez, V., 2016. Determination of coefficient defining leaf area development indifferent genotypes, plant types and planting densities in peanut (Arachis hypogeae L.). Field Crops Research. 199: 42–51.  https://doi.org/10.1016/j.fcr.2016.09.013

 

  • Lollato, R. P., Patrignani, A., Ochsner, T. E., & Edwards, J. T. 2016. Prediction of plant available water at sowing for winter wheat in the Southern Great Plains. Agronomy Journal, 108, 745–757. https://doi.org/10.2134/agronj2015.0433

 

2015

  • Aryal J.P., T.B. Sapkota, M.L. Jat, D.K. Bishnoi. 2015. On-farm data-rich analysis explains yield and quantifies yield gaps of winter wheat in the U.S. central Great Plains. Field Crops Research. 51(1): 1-16. https://doi.org/10.1016/j.fcr.2021.108287

 

  • Ghanem, M.E., Marrou, H., Soltani, A., Kumar, S., Sinclair, T.R. 2015. Lentil (Lens culinaris Medik.) variation in phenology and yield evaluated with a model. Agronomy Journal. 107: 1967–1977. https://doi.org/10.2134/agronj15.0061

 

  • Ghanem, M.E., Marrou, H., Biradar, C., Sinclair, T.R., 2015. Production potential of lentil (Lens culinaris medik.) in East Africa. Agricultural Systems. 137, 24–38. https://doi.org/10.1016/j.agsy.2015.03.005.

 

  • Lollato, R. P. 2015. Limits to winter wheat (Triticum aestivum L.) productivity and resource-use efficiency in the southern Great Plains .Doctoral dissertation, Oklahoma State University.

 

  • Maddah, V., Soltani, A., Zeinali, E., Bannayan-Aval, M., 2015. Simulating climate change impacts on wheat production in Gorgan, Iran. Bulletin of Environment, Pharmacology and Life Sciences., 4: 58- 67. Online ISSN 2277-1808. 

 

  • Messina, C.D., Sinclair, T.R., Hammer, G.L., Curan, D., Thompson, J., Oler, Z., Gho, C., Cooper, M., 2015. Limited-Transpiration Trait May Increase Maize Drought Tolerance in the US Corn Belt. Biometry, Modeling & Statistics. 107(6): 1978-1986. https://doi.org/10.2134/agronj15.0016

 

  • Soltani, A. and Sinclair, T.R., 2015. A comparison of four wheat models with respect to robustness andtransparency: Simulation in a temperate, sub-humid environment. Field Crops Research. 175: 37-46. https://doi.org/10.1016/j.fcr.2014.10.019

2014

  • Ahmadi, S.A.D., Parsa, M., Bannayan, M., Mahallati, M.N., Deihimfard, R., 2014. Yield gap analysis of chickpea under semi-arid conditions: A simulation study International Journal of Plant Production, 8(4): 531-548. ISSN: 1735-6814 (Print), 1735-8043 (Online).

 

  • Amiri Deh Ahmadi, S., Parsa, M., Bannayan, M., Nassiri Mahallati, M., Deihimfard, R. 2014. Yield gap analysis of chickpea under semi-arid conditions:A simulation study. International Journal of Plant Production, 8(4): 531-548. https://doi.org/10.22069/ijpp.2014.1723

 

  • Hajarpoor, A., Soltani, A., Zeinali, E., Sayyedi, F., 2014. Simulating climate change impacts on production of chickpea under water-limited conditions. Agriculture Science Developments. 3(6): 209-217. ISSN: 2306-7527.

 

  • Hajarpoor, A., Soltani, A., Zeinali, E., Sayyedi, F., 2014. Potential benefits from adaptation to climate change in chickpea. Agriculture Science Developments. 3(7): 230-236.

 

  • Marrou, H., Sinclair, T.R., Metral, R., 2014. Assessment of irrigation scenarios to improve performances of Lingot bean (Phaseolus vulgaris) in southwest France. European Journal of Agronomy. 59, 22–28. https://doi.org/10.1016/j.eja.2014.05.006.

 

2013

  • Soltani, A., Maddah, V., Sinclair, T.R., 2013. SSM-Wheat: a simulation model for wheat development, growth and yield. International Journal of Plant Production. 7(4): 711-740. https://doi.org/10.22069/IJPP.2013.1266

2012

2011